Your STHS is out of Date! Please update your STHS version!
Login

Toronto Marlies
GP: 10 | W: 6 | L: 4
GF: 25 | GA: 23 | PP%: 28.57% | PK%: 81.82%
GM : Dale Lautner | Morale : 62 | Team Overall : 61
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Toronto Marlies
6-4-0, 12pts
3
FINAL
5 Chicago Wolves
16-6-0, 32pts
Team Stats
L3StreakW2
3-2-0Home Record10-2-0
3-2-0Home Record6-4-0
6-4-0Last 10 Games9-0-1
2.50Goals Per Game3.41
2.30Goals Against Per Game2.64
28.57%Power Play Percentage18.18%
81.82%Penalty Kill Percentage71.88%
Chicago Wolves
16-6-0, 32pts
2
FINAL
1 Toronto Marlies
6-4-0, 12pts
Team Stats
W2StreakL3
10-2-0Home Record3-2-0
6-4-0Home Record3-2-0
9-0-1Last 10 Games6-4-0
3.41Goals Per Game2.50
2.64Goals Against Per Game2.30
18.18%Power Play Percentage28.57%
71.88%Penalty Kill Percentage81.82%
Team Leaders
Eric RobinsonGoals
Eric Robinson
5
Eric RobinsonAssists
Eric Robinson
6
Eric RobinsonPoints
Eric Robinson
11
Plus/Minus
Danila Klimovich
3
Pavel FrancouzWins
Pavel Francouz
6
Alex StalockSave Percentage
Alex Stalock
0.923

Team Stats
Goals For
25
2.50 GFG
Shots For
248
24.80 Avg
Power Play Percentage
28.6%
6 GF
Offensive Zone Start
38.9%
Goals Against
23
2.30 GAA
Shots Against
271
27.10 Avg
Penalty Kill Percentage
81.8%%
2 GA
Defensive Zone Start
36.5%
Team Info

General ManagerDale Lautner
DivisionNorth Division
ConferenceWestern Conference
Captain
Assistant #1Ryan Murray
Assistant #2Ridly Greig


Arena Info

Capacity3,000
Attendance0
Season Tickets1,650


Roster Info

Pro Team35
Farm Team18
Contract Limit53 / 65
Prospects35


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Eric Robinson0X100.008043917582848579477371757574640787102821,600,000$
2Taylor Raddysh0XX100.00764791768385778154757670785750077710252775,000$
3Mason Appleton0XX100.006643787481867775437266717269590846802731,150,000$
4Alex Formenton0X100.00666775886792957355556964555567083670242775,000$
5Austin Czarnik0X100.00604375746578736765626162677363081630312775,000$
6Dominic Toninato0X100.00664374706871736661626266666353084620291925,000$
7Ridly Greig (R) (A)0XX100.00654469717478606758666263675150083620211775,000$
8Cedric Paquette0XX100.009051678264728760554750635570700846103011,400,000$
9Ben Jones (R)0X100.00655262716266656661646067665250086610241775,000$
10Matej Blumel (R)0X100.00624071686462626442626061645150084580231775,000$
11Jamieson Rees (R)0X100.00565358705862626359635654635050084570222839,167$
12Danila Klimovich (R)0X100.00674664686757566241565862635050082570204886,667$
13Ozzy Wiesblatt (R)0X100.00614066686260605941565560615050080560211775,000$
14Ryan Suzuki (R)0X100.00574568686261606157595654615050080560223863,333$
15John Beecher (R)0X100.00675263626961605951575359595050039560225925,000$
16Ben Harpur0X100.007058726891838069406461706679690826802811,150,000$
17Ryan Murray (A)0X100.00584377718283766740636066668474083660303775,000$
18Cale Fleury0X100.00674771717978676640625967656154084640251775,000$
19Mark Pysyk0X100.00584372656875766440595568618572084630311850,000$
20Alec Regula0X100.00665158676961606340615567625050077590232866,667$
21Fredrik Claesson0X100.00523595826065645540405060407367080590311775,000$
22David Farrance (R)0X100.00594470696364636140615363615250080580242925,000$
23Matthew Robertson (R)0X100.00625366666862626340595464615050080580222797,500$
24Ville Pokka0X100.00613575716351624950535255407358083560291775,000$
25Jesse Blacker0X100.00533575746459685350505452407358039560321775,000$
Scratches
1Joachim Blichfeld (R)0XX100.00593575785466665450515351506048019550253933,333$
2Chase Lang (R)0XX100.00565555555758585550555555556568019540271775,000$
3Zac Rinaldo0XX100.00613575736066675145505051466048019540331775,000$
4Filip Sandberg0XX100.00454545454545454545354545454545019420291775,000$
5Jesse Graham0X100.00504545454645474525454545255454020450291775,000$
TEAM AVERAGE100.0063467070676867624858576159615606959
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name #CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Pavel Francouz0100.00837675737881818282797969620767503322,000,000$
2Alex Stalock0100.0074797767767673757675758376081730362775,000$
Scratches
1Ilya Konovalov (R)0100.0075757579846771676670487172072700252842,500$
2Marek Langhamer0100.0075757582787068677068466668025700291900,000$
3Philippe Desrosiers0100.0061595764595554535459575450025550283775,000$
TEAM AVERAGE100.007473727375706969707061696605669
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Eric RobinsonToronto Marlies (TOR)LW105611-300161538101413.16%622122.15123318000051030.77%13137000.9900000111
2Mason AppletonToronto Marlies (TOR)C/RW104610-34022262961813.79%724724.80101118000071145.49%23364100.8100000101
3Taylor RaddyshToronto Marlies (TOR)LW/RW10369-300181223102013.04%221521.59123518000001054.55%11148000.8300000110
4Austin CzarnikToronto Marlies (TOR)C1034735581828102110.71%518918.90112313000030057.14%119710000.7400010200
5Ben HarpurToronto Marlies (TOR)D1016710092017225.88%1727127.15123120000010100%0108000.5200000010
6Ridly GreigToronto Marlies (TOR)C/LW102353751219284207.14%419119.16011113000041070.00%1076000.5200001010
7Danila KlimovichToronto Marlies (TOR)RW10314395151093633.33%318218.24101113000000050.00%863000.4400001000
8Cale FleuryToronto Marlies (TOR)D10044-200358230%919219.2701111200007000%045000.4200000000
9Jamieson ReesToronto Marlies (TOR)C10213-1751316124616.67%316316.3200000000001044.26%6133000.3700001010
10Ben JonesToronto Marlies (TOR)C10112-2951218177125.88%513913.9200000000000035.00%6022000.2900100001
11Mark PysykToronto Marlies (TOR)D10022-3209126420%824124.1201142000009000%013000.1700000000
12Dominic ToninatoToronto Marlies (TOR)C101010002820250.00%0414.1900000000000050.00%400000.4800000000
13Ryan MurrayToronto Marlies (TOR)D1001120071314210%1022422.4100001200017000%047000.0900000000
14Cedric PaquetteToronto Marlies (TOR)C/LW10000-100313210%1313.1300000000050033.33%30000000000000
15Ville PokkaToronto Marlies (TOR)D10000-120461110%114414.460000000001000%02200000000000
16Alec RegulaToronto Marlies (TOR)D10000000000000%060.620000000000000%00000000000000
17Alex FormentonToronto Marlies (TOR)LW10000000011110%0161.680000000009000%00000000000000
18David FarranceToronto Marlies (TOR)D10000000000000%010.150000000000000%00000000000000
19Fredrik ClaessonToronto Marlies (TOR)D10000-100191100%613913.990000000000000%01000000000000
20Matej BlumelToronto Marlies (TOR)LW10000-12017911440%316416.4200000000000028.57%712100000000000
21Ozzy WiesblattToronto Marlies (TOR)RW10000-100000000%070.800000000000000%00000000000000
Team Total or Average210254166-1047251712182487313410.08%90303414.4561016201640001726146.88%5299269100.4300113553
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Pavel FrancouzToronto Marlies (TOR)106400.9182.1857802212571200100100111
2Alex StalockToronto Marlies (TOR)10000.9232.00300011390000010000
Team Total or Average116400.9192.1760802222701290101010111


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contrat Signature Date Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Alec RegulaToronto Marlies (TOR)D238/6/2000No207 Lbs6 ft4NoNoN/ANoNo2Pro & Farm866,667$0$0$No866,667$--------No--------
Alex FormentonToronto Marlies (TOR)LW249/13/1999No195 Lbs6 ft3NoNoN/ANoNo2Pro & Farm775,000$0$0$No775,000$--------No--------Link
Alex StalockToronto Marlies (TOR)G367/28/1987No170 Lbs5 ft11NoNoN/ANoNo2Pro & Farm775,000$0$0$No775,000$--------No--------NHL Link
Austin CzarnikToronto Marlies (TOR)C3112/12/1992No170 Lbs5 ft9NoNoN/ANoNo2Pro & Farm775,000$0$0$No775,000$--------No--------
Ben HarpurToronto Marlies (TOR)D281/12/1995No231 Lbs6 ft6NoNoN/ANoNo1Pro & Farm1,150,000$0$0$No------------------NHL Link
Ben JonesToronto Marlies (TOR)C242/26/1999Yes187 Lbs6 ft0NoNoN/ANoNo1Pro & Farm775,000$0$0$No------------------
Cale FleuryToronto Marlies (TOR)D2511/19/1998No204 Lbs6 ft1NoNoN/ANoNo1Pro & Farm775,000$0$0$No------------------NHL Link
Cedric PaquetteToronto Marlies (TOR)C/LW308/13/1993No205 Lbs6 ft0NoNoN/ANoNo1Pro & Farm1,400,000$0$0$No------------------Link
Chase LangToronto Marlies (TOR)C/RW279/13/1996Yes187 Lbs6 ft1NoNoN/ANoNo1Pro & Farm775,000$0$0$No------------------
Danila KlimovichToronto Marlies (TOR)RW201/9/2003Yes203 Lbs6 ft2NoNoN/ANoNo4Pro & Farm886,667$0$0$No886,667$886,667$886,667$------NoNoNo------
David FarranceToronto Marlies (TOR)D246/23/1999Yes192 Lbs6 ft0NoNoN/ANoNo2Pro & Farm925,000$0$0$No925,000$--------No--------
Dominic ToninatoToronto Marlies (TOR)C293/9/1994No192 Lbs6 ft2NoNoN/ANoNo1Pro & Farm925,000$0$0$No------------------
Eric RobinsonToronto Marlies (TOR)LW286/14/1995No205 Lbs6 ft2NoNoN/ANoNo2Pro & Farm1,600,000$0$0$No1,600,000$--------No--------NHL Link
Filip SandbergToronto Marlies (TOR)C/RW297/23/1994 11:23:08 AMNo190 Lbs5 ft9NoNoN/ANoNo1Pro & Farm775,000$0$0$No------------------Link
Fredrik ClaessonToronto Marlies (TOR)D3111/24/1992No196 Lbs6 ft1NoNoN/ANoNo1Pro & Farm775,000$0$0$No------------------Link
Ilya KonovalovToronto Marlies (TOR)G257/13/1998Yes194 Lbs6 ft0NoNoN/ANoNo2Pro & Farm842,500$0$0$No842,500$--------No--------Link
Jamieson ReesToronto Marlies (TOR)C222/26/2001Yes172 Lbs5 ft11NoNoN/ANoNo2Pro & Farm839,167$0$0$No839,167$--------No--------
Jesse BlackerToronto Marlies (TOR)D324/19/1991No190 Lbs6 ft1NoNoN/ANoNo1Pro & Farm775,000$0$0$No------------------Link
Jesse GrahamToronto Marlies (TOR)D295/13/1994No184 Lbs6 ft0NoNoN/ANoNo1Pro & Farm775,000$0$0$No------------------Link
Joachim BlichfeldToronto Marlies (TOR)LW/RW257/17/1998Yes180 Lbs6 ft2NoNoN/ANoNo3Pro & Farm933,333$0$0$No933,333$933,333$-------NoNo-------Link
John BeecherToronto Marlies (TOR)C224/5/2001Yes209 Lbs6 ft3NoNoN/ANoNo5Pro & Farm925,000$0$0$No925,000$925,000$925,000$925,000$-----NoNoNoNo-----
Marek LanghamerToronto Marlies (TOR)G297/22/1994No193 Lbs6 ft2NoNoN/ANoNo1Pro & Farm900,000$0$0$No------------------Link
Mark PysykToronto Marlies (TOR)D311/11/1992No198 Lbs6 ft1NoNoN/ANoNo1Pro & Farm850,000$0$0$No------------------
Mason AppletonToronto Marlies (TOR)C/RW271/15/1996No197 Lbs6 ft3NoNoN/ANoNo3Pro & Farm1,150,000$0$0$No1,150,000$1,150,000$-------NoNo-------NHL Link
Matej BlumelToronto Marlies (TOR)LW235/31/2000Yes198 Lbs6 ft0NoNoN/ANoNo1Pro & Farm775,000$0$0$No------------------
Matthew RobertsonToronto Marlies (TOR)D223/9/2001Yes201 Lbs6 ft4NoNoN/ANoNo2Pro & Farm797,500$0$0$No797,500$--------No--------
Ozzy WiesblattToronto Marlies (TOR)RW213/9/2002Yes183 Lbs5 ft10NoNoN/ANoNo1Pro & Farm775,000$0$0$No------------------
Pavel FrancouzToronto Marlies (TOR)G336/3/1990No179 Lbs6 ft0NoNoN/ANoNo2Pro & Farm2,000,000$0$0$No2,000,000$--------No--------NHL Link
Philippe DesrosiersToronto Marlies (TOR)G288/16/1995No201 Lbs6 ft2NoNoN/ANoNo3Pro & Farm775,000$0$0$No775,000$775,000$-------NoNo-------
Ridly GreigToronto Marlies (TOR)C/LW218/8/2002Yes183 Lbs6 ft0NoNoN/ANoNo1Pro & Farm775,000$0$0$No------------------
Ryan MurrayToronto Marlies (TOR)D309/27/1993No206 Lbs6 ft1NoNoN/ANoNo3Pro & Farm775,000$0$0$No775,000$775,000$-------NoNo-------NHL Link
Ryan SuzukiToronto Marlies (TOR)C225/28/2001Yes176 Lbs6 ft0NoNoN/ANoNo3Pro & Farm863,333$0$0$No863,333$863,333$-------NoNo-------
Taylor RaddyshToronto Marlies (TOR)LW/RW252/18/1998No198 Lbs6 ft3NoNoN/ANoNo2Pro & Farm775,000$0$0$No775,000$--------No--------NHL Link
Ville PokkaToronto Marlies (TOR)D296/3/1994No214 Lbs5 ft10NoNoN/ANoNo1Pro & Farm775,000$0$0$No------------------Link
Zac RinaldoToronto Marlies (TOR)C/LW336/15/1990No192 Lbs5 ft10NoNoN/ANoNo1Pro & Farm775,000$0$0$No------------------Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3526.80194 Lbs6 ft11.80908,690$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Eric RobinsonMason AppletonTaylor Raddysh40122
2Ridly GreigAustin CzarnikDanila Klimovich30122
3Matej BlumelBen JonesJamieson Rees20122
4Matej BlumelJamieson ReesMason Appleton10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mark PysykBen Harpur40122
2Ryan MurrayCale Fleury30122
3Ville PokkaFredrik Claesson20122
4Ryan MurrayBen Harpur10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Eric RobinsonMason AppletonTaylor Raddysh60122
2Ridly GreigAustin CzarnikDanila Klimovich40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Mark PysykBen Harpur60122
2Ryan MurrayCale Fleury40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Mason AppletonAlex Formenton60122
2Austin CzarnikEric Robinson40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Mark PysykBen Harpur60122
2Ryan MurrayCale Fleury40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Mason Appleton60122Mark PysykBen Harpur60122
2Austin Czarnik40122Ryan MurrayCale Fleury40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Mason AppletonEric Robinson60122
2Ridly GreigTaylor Raddysh40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mark PysykBen Harpur60122
2Ryan MurrayCale Fleury40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Eric RobinsonMason AppletonTaylor RaddyshRyan MurrayBen Harpur
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Eric RobinsonMason AppletonTaylor RaddyshRyan MurrayBen Harpur
Extra Forwards
Normal PowerPlayPenalty Kill
Ridly Greig, Dominic Toninato, Cedric PaquetteRidly Greig, Dominic ToninatoRidly Greig
Extra Defensemen
Normal PowerPlayPenalty Kill
Mark Pysyk, Ryan Murray, Ville PokkaMark PysykMark Pysyk, Ben Harpur
Penalty Shots
Mason Appleton, Taylor Raddysh, Alex Formenton, Eric Robinson, Ridly Greig
Goalie
#1 : Pavel Francouz, #2 : Alex Stalock
Custom OT Lines Forwards
Mason Appleton, Taylor Raddysh, Alex Formenton, Austin Czarnik, Ridly Greig, Dominic Toninato, Dominic Toninato, Cedric Paquette, Ben Jones, Matej Blumel, Danila Klimovich
Custom OT Lines Defensemen
Ville Pokka, Ben Harpur, Ryan Murray, Cale Fleury, Mark Pysyk


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Chicago Wolves624000001518-33120000076131200000812-440.333152742102911314661100751218255369910110.00%8275.00%09420645.63%9519349.22%5913045.38%18989202102218110
2Rockford IceHogs440000001055220000005322200000052381.00010142402291131026110075128935117211545.45%30100.00%09420645.63%9519349.22%5913045.38%18989202102218110
Total10640000025232532000001293532000001314-1120.6002541661229113248611007512271904717121628.57%11281.82%09420645.63%9519349.22%5913045.38%18989202102218110
_Since Last GM Reset10640000025232532000001293532000001314-1120.6002541661229113248611007512271904717121628.57%11281.82%09420645.63%9519349.22%5913045.38%18989202102218110
_Vs Conference10640000025232532000001293532000001314-1120.6002541661229113248611007512271904717121628.57%11281.82%09420645.63%9519349.22%5913045.38%18989202102218110

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
1012L3254166248271904717112
All Games
GPWLOTWOTL SOWSOLGFGA
106400002523
Home Games
GPWLOTWOTL SOWSOLGFGA
5320000129
Visitor Games
GPWLOTWOTL SOWSOLGFGA
53200001314
Last 10 Games
WLOTWOTL SOWSOL
640000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
21628.57%11281.82%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
61100751229113
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
9420645.63%9519349.22%5913045.38%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
18989202102218110


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
17Rockford IceHogs0Toronto Marlies1BWBoxScore
215Rockford IceHogs3Toronto Marlies4BWXBoxScore
323Toronto Marlies2Rockford IceHogs0AWBoxScore
431Toronto Marlies3Rockford IceHogs2AWXBoxScore
860Toronto Marlies3Chicago Wolves2AWXBoxScore
964Toronto Marlies2Chicago Wolves5ALBoxScore
1068Chicago Wolves1Toronto Marlies5BWBoxScore
1172Chicago Wolves3Toronto Marlies1BLBoxScore
1276Toronto Marlies3Chicago Wolves5ALBoxScore
1380Chicago Wolves2Toronto Marlies1BLBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price4020
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
36 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 3,180,417$ 2,911,250$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 0$ 0$




Toronto Marlies Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Toronto Marlies Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Toronto Marlies Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Toronto Marlies Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Toronto Marlies Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA